

Introduction

Problem Statement

- Rutting is one of major distresses in flexible pavement.
- It leads to the structural failure of the pavement.
- It causes hydroplaning and its poses safety problem in night times as shown in figure below.

Figure 1: Field rutting in a flexible pavement

Objective

To study layer-wise rutting of a flexible pavement using a multi-depth deflectometer and compare the strain developed in subgrade with a linear elastic software.

Methodology

Test Sites: CSIR-CRRI

The pavement was designed for 30 Million Standard Axle (MSA) traffic and 5% CBR.

Figure 2: Crust composition of pavement

Investigation of Pavement Responses Using Multi-Depth Deflectometer

Shahbaz Khan^a, M N Nagabhushana^b, Kamal Hossain^a and Devesh Tiwari^b

^aAdvanced Road and Transportation Engineering Lab (ARTEL), Memorial University of Newfoundland, Canada ^bCSIR-Central Road Research Institute, India

Field Tests

Factors Affecting Rutting

The design and construction of the test section has been done as per ministry specifications.

Table 1: Bituminous mix property

Binder	Optimum	Bulk	Marshall	Retained	Flow	Air	VFB
type in	binder	density	stability	marshall	(mm)	voids	(%)
mix	content	(g/cc)	(kN)	stability		(%)	
	(%)			%			
DBC	5.1	2.280	10.22	83	3.1	4.2	71.7
DBM	5.0	2.301	10.15	79	3.5	4.9	69.3

Instruments Used

Deflectometer

Profilometer

HVS Mark IV+

Linear Elastic Software

Weather Station

Transportation Research Board

Data Analysis

was used to determine the vertical compressive strain at top of subgrade.

Conclusions

- The total rutting was 19.523 mm due to load applications of 8.88 million standard axles (9,33,000 passes).
- The contribution of bituminous layer rutting is 56.1 %, the base layer is 22.8%, the subbase layer is 8.2% and the subgrade layer is 12.9% which clearly suggest that rutting is taking place in all layers
- The result suggests the need for development of better transfer function for rutting as computed vertical compressive strain were found to be different from field values.

Acknowledgements

Dynatest

