Compressibility Assessment of Roadway Embankments Using Tire Derived Aggregates (TDA) Auchib Reza¹, Kamal Hossain² and Ashutosh Sutra Dhar³

Research Background

- In North America, more than 280 million scrap tires are generated each year, with 30 million in Canada and 250 million in the United States
- These waste tires either go to landfill or stockpile
- Scraped tires disposed of in landfills can lead to a public health hazard and affect the surrounding natural environment
- Researchers across the world are trying alternative uses of scrap tires
- Roadway embankment construction using tirederived aggregates (TDA) is the most popular and ecologically viable method due to large amount of consumption of material in the embankment

Problem Statement

- TDA's deformability/ compressibility under applied load is an important consideration for the design of tire shred embankment
- There is a lack of quantitative information on the compressibility characteristics of tire shred embankments

Research Outline

- Finite element (FE) method is applied to assess the compressibility of the tire shred embankment
- Linear and nonlinear compressibility analysis of tire shred embankment is performed, assuming a multilayer elastic-isotropic system
- Two-D axisymmetric and 3D finite element (FE) analysis is employed with a linear and nonlinear elastic material model for the TDA
- The results from the FE analysis and the deflections calculated by a multilayer computer software, KENLAYER, are then compared to examine the effectiveness of the models in calculating the TDA deformation

TDA (**m**)

¹Department of Civil Engineering, Memorial University of Newfoundland, Canada ²Advanced Road & Transportation Engineering Lab (ARTEL), Department of Civil Engineering, Carleton University, Canada ³Department of Civil Engineering, Memorial University of Newfoundland, Canada

Material Model

size	Depth	Vertical	Stiffness	TDA size	Depth	Vertical	Stiffness	TDA size	Depth	Vertical	Stiffness
m)	(mm)	stress (kPa)	Modulus (kPa)	(mm)	(mm)	stress (kPa)	Modulus (kPa)	(mm)	(mm)	stress (kPa)	Modulus (kPa)
	600 900 1200 1500 1800	69.50 37.84 27.39 23.26 21.72	175 110 75 50 35	150	600 900 1200 1500 1800	69.24 37.31 26.33 21.67 19.60	125 75 65 45 30	300	600 900 1200 1500 1800	69.22 37.27 26.25 21.55 19.44	122 71 62 42 21

Results (Axisymmetric 2D Analysis)

TRBAM-21-00943

Conclusions

- Deflections of the tire shred embankment based on nonlinear elastic analysis are significantly higher (as much as 300%) than the deflections calculated using linear elastic model
- Deflection values for 300 mm tire shreds are approximately 10% and 20% higher than the values for 150 mm and 50 mm tire shreds, respectively
- Calculated deflections are higher (3-6%) from 3D FE analysis than from 2D axisymmetric FE analysis
- Settlements calculated using nonlinear FE analysis are significantly higher (as much as 100%) than the settlements calculated using the pavement design/ analysis software 'KENLAYER'