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Research Background

• In North America, more than 280 million scrap 

tires are generated each year, with 30 million in 

Canada and 250 million in the United States

• These waste tires either go to landfill or 

stockpile

• Scraped tires disposed of in landfills can lead 

to a public health hazard and affect the 

surrounding natural environment

• Researchers across the world are trying 

alternative uses of scrap tires

• Roadway embankment construction using tire-

derived aggregates (TDA) is the most popular 

and ecologically viable method due to large 

amount of consumption of material in the 

embankment

• TDA’s deformability/ compressibility under 

applied load is an important consideration for 

the design of tire shred embankment

• There is a lack of quantitative information on 

the compressibility characteristics of tire shred 

embankments

Problem Statement

Research Outline

• Finite element (FE) method is applied to assess 

the compressibility of the tire shred 

embankment

• Linear and nonlinear compressibility analysis of 

tire shred embankment is performed, assuming 

a multilayer elastic-isotropic system

• Two-D axisymmetric and 3D finite element (FE) 

analysis is employed with a linear and 

nonlinear elastic material model for the TDA

• The results from the FE analysis and the 

deflections calculated by a multilayer computer 

software, KENLAYER, are then compared to 

examine the effectiveness of the models in 

calculating the TDA deformation

Modelling Approach
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Surface Deflection of Linear and Nonlinear 

Compressibility Analysis

Comparison of Predicted Deflections
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• Deflections of the tire shred embankment based on 

nonlinear elastic analysis are significantly higher (as 

much as 300%) than the deflections calculated using 

linear elastic model

• Deflection values for 300 mm tire shreds are 

approximately 10% and 20% higher than the values for 

150 mm and 50 mm tire shreds, respectively

• Calculated deflections are higher (3-6%) from 3D FE 

analysis than from 2D axisymmetric FE analysis

• Settlements calculated using nonlinear FE analysis are 

significantly higher (as much as 100%) than the 

settlements calculated using the pavement design/ 

analysis software ‘KENLAYER’

Material Model

Results (Axisymmetric 2D Analysis)

Results

Conclusions
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