built on trust

VARD

a Fincantieri company

Practical Considerations for Autonomous Vessels

Bruce Phillips, Senior Consultant bruce.phillips@vardmarineinc.com

CISMaRT Online Workshop 26 November 2020

OUR LOCATIONS.

4 office locations worldwide: Vancouver, BC Ottawa, ON Houston, TX Vung Tau, Vietnam

Te

Part of Vard Group, headquartered in Norway

Majority owned by Fincantieri in Italy

built on trust

Ocean Infinity Marine Robotics

- 8x 78 m multi-role robotic vessels, 2022-2023 delivery
 - Onshore remote control, light crewed or uncrewed operations
 - Green ammonia, fuel cell, battery technology
 - ROV & robotic systems deployment/recovery/operation

Autonomy Levels

SAMPLE DEFINITIONS (Bureau Veritas)

Level	Description	Example
0	Human operated	Crewed vessel, manual operation
1	Human directed	Automated Bridge & platform management
2	Human delegated	Limited autonomous decision making & control
3	Human supervised	Full autonomy with high level oversight
4	Fully autonomous	Full autonomy

- Small vessels already at Level 4
 - Mayflower 2
 - Numerous UxV
- Larger vessels currently at approx. Level 2
 - Safety
 - Machinery and systems
 - Regulatory regime
- Some approaching level 3, targeting level 4

Considerations for Larger Vessels

- Implications of reduced or non-existent onboard presence
 - Situational awareness
 - Systems management
 - Routine maintenance
 - Fault/Failure identification & recovery
 - Security
- Related imperatives
 - Communications
 - Observability & Controllability
 - Reliability
- System impacts

Observability, Controllability

- Vessel control
 - Perception & Situational Awareness (PSA) systems
 - Similar to C4IS element of naval combat systems in principle
 - Sense environment
 - All-weather
 - Relatively short range
 - All available means (Radar, AIS, LRIT, EOIR...)
 - Interpret
 - Determine response actions
 - Implement
 - Observe & repeat
 - Primary time scales O(hours to seconds)
 - Primary parameters O(10's to 100's)
 - SOLAS/ColRegs Compliant!

Observability, Controllability

- Machinery Control
 - Similar to IPMS with operator roles automated
 - Primary time scales O(10's of seconds to 10s of milliseconds)
 - Dense information requirements
 - Today 5-20 k IO points
 - Future 10-50k points
 - Information reliability & interpretation
 - Information redundancy
 - Ex: 737 Max
 - Physics-based validity checks
 - Interpretation challenge
 - Ex: Qantas QF 32
- Seen as the most challenging aspect of full autonomy
- Al application layered over expanded IPMS
- Must coordinate with Vessel Control function

Communications

- Human involvement up to Level 3 will begin onboard and transition to fully remote with experience & confidence
- Onboard autonomy even at Level 4 unlikely to remove requirement for real-time remote situational awareness & management at a land-based control centre
 - Requires high data rate, low latency data links that are robust to failures and weather
 - Favours LEO Satcom (Starlink, Iridium etc)
- Must remain operable through all failures including dark ship
- Multiple redundancy (antennas, channels)

Reliability

- Statistically 63% of items will fail before MTBF
 - Commercial: Large fleets, shorter unmanned durations
 - Naval: Small fleets, larger unmanned durations
 - Research vessels & arctic voyages: Small numbers, extended durations
- No onboard maintenance -> reduced MTBF
- Remove least reliable elements from critical functional paths
 - Ex: IEP, Diesel-electric
- Remove auxiliary system complications altogether
 - Ex: Gas Turbine vs diesel (where reasonable)
- Implement redundancy as flexibly as possible
 - Ex: IEP vs CODAD
- Eliminate correlated failures & failure propagation paths across transverse systems
 - Electrical power distribution
 - Fuel system
 - Compressed air system
 - Lube oil system
- Autonomous machinery control & auxiliary systems remain the most challenging reliability aspects
- Simulation is key

Reliability – Basic Propulsion System

Reliability – IEP/CODLAG/CODLOG Propulsion Systems

Security

- General
 - Minimize & control interior access points
 - Impede unauthorized boarding
 - Manoeuvring
 - Structure
 - Slippery foam
 - Electric razor fence
 - Disable boats (foul poropellers)
 - Provide non-lethal deterrents
 - Laser dazzlers
 - High intensity sound
 - Water cannons
 - High intensity microwaves
 - Requires
 - Local or remote human involvement
 - Triggered real-time broadband EOIR to remote centres
- Naval & anti-piracy
 - Provide force escalation options
 - Kinetic weapons less useful against sustained assault (cannot remotely reload, etc.)

High-Intensity Sound

Millimetre Wave

Laser Dazzler

