NRC.CANADA.CA

Development of Ship Situational Awareness in Ice

Matthew Garvin, National Research Council

National Research Conseil national de Council Canada recherches Canada

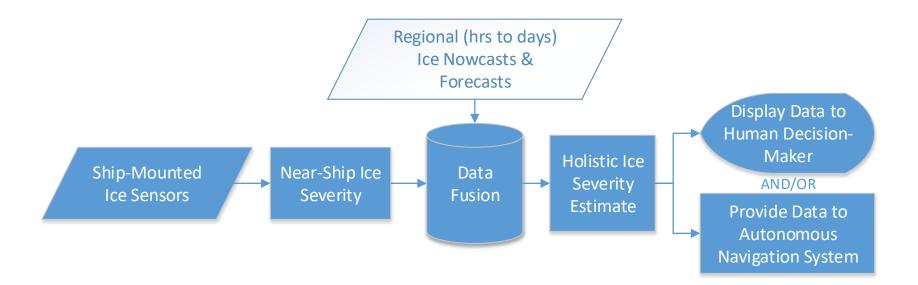
Why?

Much work is being done to develop autonomous vessel technology but little of this work addresses autonomous vessel navigation in ice-covered waters

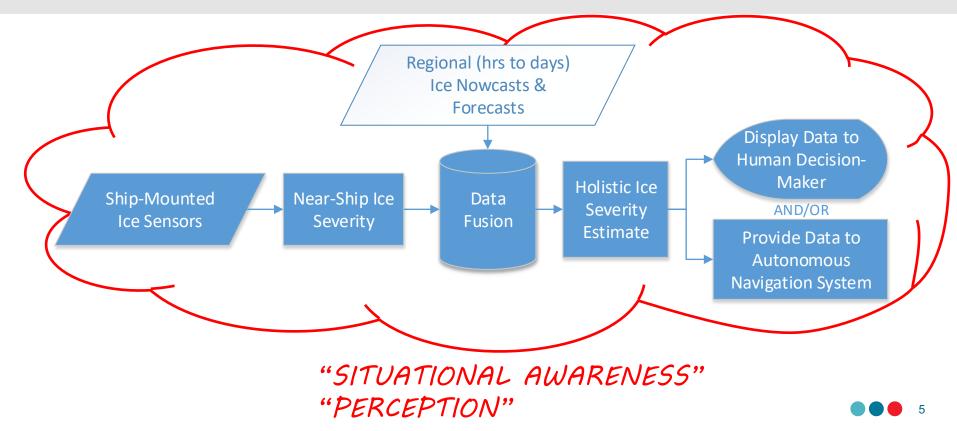
Developing the tacit skill to navigate safely in ice is a career-long endeavour for professional mariners

Development of autonomous systems has the potential to reduce risk and increase supply chain resiliency

Background


Humans are expected to be key navigational decision-makers for the foreseeable future (on ship or via. remote control)¹

- Ice sensors can provide enhanced situational awareness for humans on a ship
- As ships begin to be remote-controlled, situational awareness for the remote operator is critical
- Eventually, sensors will provide information to routing algorithms for autonomous ships



Background

Background

Ship-Mounted Ice Sensors

Sensor	Ice Data (subject to ongoing research on sensor interpretation)
LiDAR (☆)	Concentration, Piece Size, Ridge Identification, Freeboard, Age (Forward-Looking)
Visual Camera (★)	Piece Size, Concentration (Forward and Side-Looking)
Electromagnetic Induction (🖈)	Thickness, Composition (Over the bow)
Visual Camera (★)	Pressure (Aft-Looking)
Whole Body Acceleration	Global Impact Load & Icebreaking Load
Propulsion Power	Total Ice Resistance

Garvin, M. (2020). 'Review of Technologies for Real-Time Shipboard Ice Severity Sensing', *RINA Smart Ship Technology Conference*

Displaying Data to Human Decision Makers

Decision Support System (DSS) Performance

- Simulator-based study of human-machine interface on ship bridge
 - How do humans respond to different information inputs, configurations, etc.?
 - How is operator performance influenced by DSS design?
- Learn how to:

International Design Conference

- provide pertinent information: what information is needed, when is it needed.
- present information in a way that doesn't distract, overload, or erode skills.

Shore Control Center (SCC) "Information Ergonomics" for Remote Control

- How do humans achieve Situational Awareness when removed from the bridge?
- Developing SCC experimental capability (proposal phase).

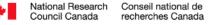
Relling, T. (2019). 'A human centered approach to the future Vessel Traffic Services', *Norwegian University of Science and Technology.* Zhu, T., et. al. (2019). 'Human factor challenges and possible solutions for the operation of highly autonomous ships', *Proceedings of the 29th European Safety and Reliability Conference.* Dybvik, H. et. al. (2020). 'Exploring challenges with designing and developing shore control centers (SCC) for autonomous ships',

7

Summary

There is lots of interesting work to be done:

- Interpreting ice sensor data
- Data fusion to combine data from multiple sensors
- Understanding what ice information is "important"
- Understanding how humans interact with:
 - ice information on a bridge
 - information in a shore control center
- The types of ice information needed to support autonomous navigation


Thank you!

Matthew Garvin

Team Lead, Marine Operations Autonomy & Safety

Matthew.Garvin@nrc-cnrc.gc.ca

