What research related to cleaner marine fuels could Canada play a leading role in and why?

Clean NG & H₂ Fuels + Hybrid Electric Propulsion + Optimal Operation

Zuomin Dong, Professor (zdong@uvic.ca)

Department of Mechanical Engineering and Institute for Integrated Energy Systems

A Systematic Evaluation of GHG/CO2e Emissions in the Upstream Fuel Supply Chain of LNG/NG in BC, Canada

- Babak Manouchehrinia (Ph.D. Work/Energy Reports, 2020)
 - BC Ministry of Environment and Ministry of Natural Gas Development of BC, Transport of Canada, and Seaspan
 - Interviewed 47 oil and gas companies in BC to have more accurate GHG emission estimates
- Upstream NG Supply Chain in BC, Canada
- Compared: dual-fuel NG vs low-sulfur diesel engines
- NG: Reduced SOx (86%), NOx (97%), & PM Emissions
- WTW CO_{2e} Emissions: GREET, GHGenius & BC Data (55% lower due to New Processes & Clean Grid Power)
- **Downstream: 77-85% of All CO_{2e} Marine Emissions**
- Only 2% WTW CO_{2e} Emissions Reduction
 - Considering additional processing/combustion leaks
 - Critical to reduce PTW CO_{2e} Emissions (New Technology)

University Department of Mechanical Engineering of Victoria Institute for Integrated Engergy Systems

Real-time Global Optimal Control of NG Hybrid Electric Propulsion

- minimum fuel consumption (CO₂ emission) and HC/CO emissions (methane slip)

- Case Study: A BCFS Ship Model
- NG Hybrid Electric and Real-time Optimal Control Considering
 - Fuel Efficiency (CO₂ Emission)
 - HC, CO and NO_x Emissions
- LNG: Cheaper & (Potentially) Cleaner
 - 66% Fuel Cost Reduction
 - 19% CO_{2e} Emissions Reduction

 University
 Department of Mechanical Engineering

 of Victoria
 Institute for Integrated Engergy Systems

Study on PEM Fuel Cell Hybrid Electric Cargo Ship

- Worked on Transportation Fuel Cells in collaboration with **Ballard Power Systems (BC, Canada)** in 1990s
- Designed the Diesel-Fuel Cell Plug-in Hybrid Green Research Vessel in 2010, and recognized the lack of an integrated marine propulsion modeling, design and control optimization tool
- **Modelled and studied** the <u>PEM fuel cell hybrid electric</u> container feeder ship to reduce the container trucks emissions, using our new integrated modeling, design and control optimization tools
- **Compared** to diesel-mech/-electric, diesel-hybrid, NG-electric/-hybrid propulsion systems

UVic Diesel-Fuel Cell Plug-in Hybrid Green Research Vessel, 2010

BC Ferries' M.V. Tachek

Department of Mechanical Engineering Institute for Integrated Engergy Systems

Modeling, Prediction & Control of Ship-Induced Propeller Cavitation Noise – Active and Leading Canadian Efforts

Propeller Cavitation: CFD Modeling, Reduced/Low-Order Models, and Exp Validation

- Transport Canada Supported Initial Work and Team's Continuous Effort Ο
- CFD Simulation and Cavitation Noise Modeling: M. Rahimpour, D. McIntyre & Dr. Peter Oshkai 0
- Propeller Cavitation Noise (Water Tank) Experiments: University of Genova, Italy: Led by Dr. M. Viviani Ο
- Low-order Propeller Thrust/Cavitation Modeling Collaboration with Marine Propulsion Res Lab, Newcastle Univ. (Prof. P. Liu) 0
- Include Ship-induced Noise (80% due to Propeller Cavitation) as a Propulsion Pollution Component
- **Propulsion System Design & Operation Control**: Propeller In-stream Speed Vessel Speed & Marine Weather State on Route

Iniversity

