CHALLENGES FACED BY DOMESTIC BULK CARRIERS IN DECARBONIZATION AND TOWARDS GREEN OPERATIONS

CANADA STEAMSHIP LINES

11/11/

ENVIRONMENTAL TARGETS

IMO TARGETS

- 40% reduction in GHG per work done by 2030
- 70% reduction in GHG per work done by 2050
- 50% total GHG reduction by 2050
- EEXI/EEDI
- CII

NORTH AMERICA EMISSION CONTROL AREA

- SO_X
- NO_X

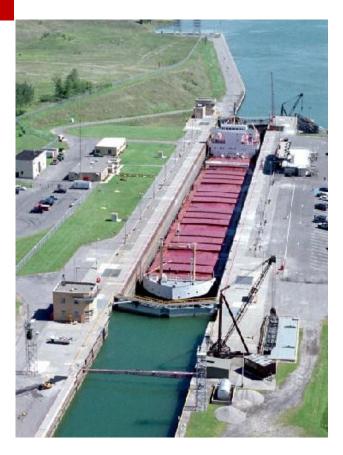
BWTS

Additional fuel consumption

DER WATER RADIATED NOISE

clent

THE SHIPS


- A mix of bulkers and selfunloading bulk carriers
- Very long lifespan, 40-50 years
- Operating profile:
 - Large % of time
 maneuvering
 - Large % of time in locks
 - High power consumption in port
 - Approx. 30% in open water sailing
- 9-10 month season

•SL

THE SHIPS

ESL 7

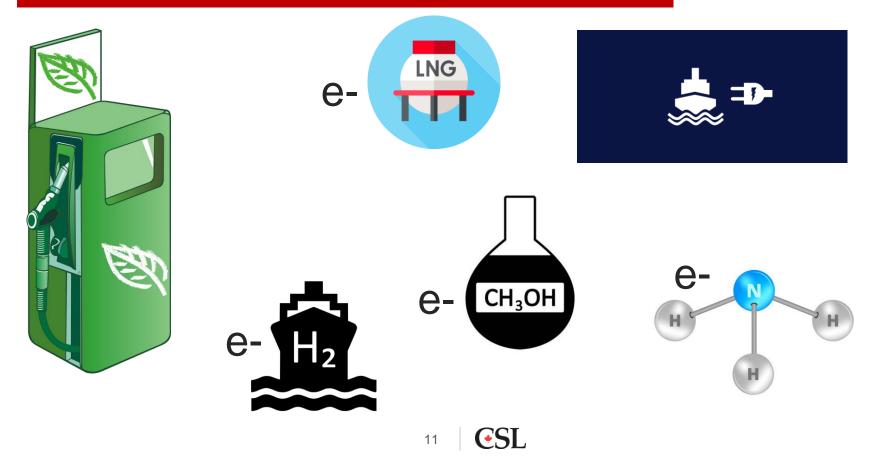
SPEED RESTRICTIONS - SEAWAY

			Maximum Speed Over The Bottom (Knots)	
Item	Column I - From	Column II - To	Column III	Column IV
1.	Upper Entrance South shore Canal Buoy A1	Lake St. Louis Buoy A13	10.5	10.5
2.	Lake St. Louis Buoy A13	Lower Entrance Lower Beauharnois Lock	12 (upd) 14 (dnb)	11 (upb) 13 (dnb)
3.	Upper Entrance Upper Beauharnois Lock	Lake St. Francis Buoy D3	9 (upb) 10.5 (dnb)	9 (upb) 10.5 (dnb)
4.	Lake St. Francis Buoy D3	Lake St. Francis Buoy D49	12 (upb) 13.5 (dnb)	12 (upb) 13.5 (dnb)
5.	Lake St. Francis Buoy D49	Snell Lock	8.5 (upb) 10.5 (dnb)	8 (upb) 10.5 (dnb)
6.	Eisenhower Lock	Iroquois Lock	11.5	10.5
7.	Iroquois Lock	McNair Island Lt. 137	13	10.5
8.	McNair Island Lt 137	Deer Island Lt. 186	11.5	10.5
9.	Deer Island Lt. 186	Bartlett Point Lt. 227	8.5 (upb) 10.5 (dnb)	8 (upb) 10.5 (dnb)
10.	Bartlett Point Lt. 227	Tibbetts Point Traffic Lighted Buoy Mo (A)	13	10.5
11.	Junction of Canadian Middle Channel and Main Channel abreast of Ironsides Island	Open Waters between Wolfe and Howe Islands through the said Middle Channel	9.5	9.5
12.	Port Robinson	Ramey's Bend through the Welland By-Pass	8	8
13.	All other canals		6	6

SPEED RESTRICTIONS – GREAT LAKES

AVAILABLE FUELS

AVAILABLE FUELS


- IFO 180/380
- MGO
- LNG
- **BIO** Not Currently Recognized by Canada/IMO

Annual demand for fuel on the Great Lakes and St. Laurence River is approx. 400,000T

Annual demand at Long Beach CA, is approx. 870,000T

10 **ESI**

NEXT GENERATION ENERGY SOURCES

OTHER TECHNOLOGIES

Technology	Pros	Cons
Just In Time Arrival	Reduces CO ₂ Reduces vessel idle time	High level of collaboration needed Lack of international standards Marginal gain in CO2 reduction
CCS	Reduces CO ₂	High CAPEX & OPEX What to do with the captured carbon? Loss of cargo capacity
Weather Routing	Reduces CO ₂	Marginal gain in CO2 reduction
Low Friction Paint / Hull Cleaning	Reduces CO ₂	Cost Removed during canal transits
Fuel Cells	Eliminate CO ₂	Availability Maturity at large scale
Electrification/Batteries	Eliminate CO ₂	Low energy density High weight penalty
Solar and Wind	Reduces CO ₂ Renewable	Weather dependent Small impact to environmental footprint of vessel Bridges

FINANCIAL CHALLENGES

Next gen fuels are expensive Short season, aggressive ROI ٠ Need for shore side investment Limited market growth • **Customers** ۰ **Technology maturity** ٠ **Need for incentives GREEN ECONOMY**

14

FUTURE UNCERTANTIES

Fuels not recognized at IMO

 How to transition to a nonrecognized fuel

Lifecycle Analysis of Fuel

- Varies by region
- Varies by feedstock
- Reporting accuracy

Crewing

- Shortages
- Training
- Costs

Local restrictions

- Environmental regulations
- Public perception

OPPORTUNITIES

- Biofuel
- Renewable Methanol
- Shore Power
- Clean Fuel Standard
- Flexibility of Canada to
 regulate its domestic fleet
- IMO working on LCA for MEPC 79

Yousef El Bagoury

CONTRACTOR DE

Yousef.elbagoury@cslships.com 514-249-2664

8